Udiddit, a social news aggregator

Introduction

Udiddit, a social news aggregation, web content rating, and discussion website, is currently
using a risky and unreliable Postgres database schema to store the forum posts,
discussions, and votes made by their users about different topics.

The schema allows posts to be created by registered users on certain topics, and can
include a URL or a text content. It also allows registered users to cast an upvote (like) or
downvote (dislike) for any forum post that has been created. In addition to this, the schema
also allows registered users to add comments on posts.

Here is the DDL used to create the schema:

Part |: Investigate the existing schema

As a first step, investigate this schema and some of the sample data in the project’s SQL
workspace. Then, in your own words, outline three (3) specific things that could be
improved about this schema. Don't hesitate to outline more if you want to stand out!

Column “upvotes” and “downvotes” in the table “bad_posts” should be INTEGER
data type

Column “post_id” in the table “bad_comments” should be a FOREIGN KEY
constraint referencing to COLUMN “id” in the table “bad_posts”

There should have a separate table for users and so “username” should be
UNIQUE

There should have a separate table for topics and so “topic” should be UNIQUE
Column “upvotes” and “downvotes” in the table “bad_posts” should contain a
single value only

There are no FOREIGN KEY constraints to define the relationship between two
tables

Column “title” should have CHECK constraint to make sure the title is not
empty

Part Il: Create the DDL for your new schema

Having done this initial investigation and assessment, your next goal is to dive deep into
the heart of the problem and create a new schema for Udiddit. Your new schema should at
least reflect fixes to the shortcomings you pointed to in the previous exercise. To help you
create the new schema, a few guidelines are provided to you:

1. Guideline #1: here is a list of features and specifications that Udiddit needs in order
to support its website and administrative interface:
a. Allow new users to register:

i
ii.
iii.
iv.

Each username has to be unique

Usernames can be composed of at most 25 characters
Usernames can't be empty

We won't worry about user passwords for this project

b. Allow registered users to create new topics:

i.
ii.
iii.
iv.

Topic names have to be unique.

The topic’s name is at most 30 characters

The topic's name can't be empty

Topics can have an optional description of at most 500 characters.

c. Allow registered users to create new posts on existing topics:

i

ii.
iii.
iv.

V.

Posts have a required title of at most 100 characters

The title of a post can’t be empty.

Posts should contain either a URL or a text content, but not both.
If a topic gets deleted, all the posts associated with it should be
automatically deleted too.

If the user who created the post gets deleted, then the post will
remain, but it will become dissociated from that user.

d. AIIow registered users to comment on existing posts:

V.

A comment’s text content can't be empty.

Contrary to the current linear comments, the new structure should
allow comment threads at arbitrary levels.

If a post gets deleted, all comments associated with it should be
automatically deleted too.

If the user who created the comment gets deleted, then the comment
will remain, but it will become dissociated from that user.

If a comment gets deleted, then all its descendants in the thread
structure should be automatically deleted too.

e. Make sure that a given user can only vote once on a given post:

Hint: you can store the (up/down) value of the vote as the values 1
and -1 respectively.

If the user who cast a vote gets deleted, then all their votes will
remain, but will become dissociated from the user.

iii. If a post gets deleted, then all the votes for that post should be
automatically deleted too.

2. Guideline #2: here is a list of queries that Udiddit needs in order to support its
website and administrative interface. Note that you don't need to produce the DQL
for those queries: they are only provided to guide the design of your new database
schema.

a. List all users who haven't logged in in the last year.

b. List all users who haven't created any post.

c. Find a user by their username.

d. List all topics that don't have any posts.

e. Find a topic by its name.

f. List the latest 20 posts for a given topic.

g. List the latest 20 posts made by a given user.

h. Find all posts that link to a specific URL, for moderation purposes.
i

List all the top-level comments (those that don't have a parent comment) for
a given post.

j. Listall the direct children of a parent comment.

k. List the latest 20 comments made by a given user.

|. Compute the score of a post, defined as the difference between the number
of upvotes and the number of downvotes

3. Guideline #3: you'll need to use normalization, various constraints, as well as
indexes in your new database schema. You should use named constraints and
indexes to make your schema cleaner.

4. Guideline #4: your new database schema will be composed of five (5) tables that
should have an auto-incrementing id as their primary key.

Once you've taken the time to think about your new schema, write the DDL for it in the
space provided here:

CREATE TABLE "users" (
"id" SERIAL PRIMARY KEY,
"username" VARCHAR(25) UNIQUE CHECK (LENGTH(TRIM("username")) > 0),
"login_date" TIMESTAMP WITH TIME ZONE

)

CREATE INDEX ON "users" ("login_date");

CREATE TABLE "topics" (
"id" SERIAL PRIMARY KEY,
"user_id" INTEGER REFERENCES "users" ON DELETE SET NULL,
"topic_name" VARCHAR(30) UNIQUE CHECK (LENGTH(TRIM("topic_name")) > 0),
"description” VARCHAR()

)5

CREATE TABLE "posts" (
"id" SERIAL PRIMARY KEY,
"title" VARCHAR(100) CHECK (LENGTH(TRIM("title")) > ©0),
"topic id" INTEGER NOT NULL REFERENCES "topics" ON DELETE CASCADE,
"user_id" INTEGER REFERENCES "users" ON DELETE SET NULL,
"URL"™ VARCHAR,
"text_content" TEXT,
"post_time" TIMESTAMP WITH TIME ZONE
)
ALTER TABLE
"posts”
ADD
CONSTRAINT "check url txt" CHECK (
(
"URL" IS NOT NULL
AND "text_content" IS NULL

"URL" IS NULL
AND "text_content” IS NOT NULL

)s
CREATE INDEX "find_ posts_ for_given topic" ON "posts"
("topic_id","post time");
CREATE INDEX "find post for given user" ON "posts" ("user_id","post time");

CREATE TABLE "comments" (
"id" SERIAL PRIMARY KEY,

"parent_comment_id" INTEGER REFERENCES "comments" ("id") ON DELETE
CASCADE,

"comment" TEXT CHECK (LENGTH(TRIM("comment"))>0),

"post id" INTEGER NOT NULL REFERENCES "posts" ON DELETE CASCADE,

"user_id" INTEGER REFERENCES "users" ON DELETE SET NULL,

"comment time" TIMESTAMP WITH TIME ZONE

)5

CREATE INDEX "find comment" ON "comments" ("user_id","comment_ time");

CREATE TABLE "votes" (
"id" SERIAL PRIMARY KEY,
"user_id" INTEGER REFERENCES "users" ON DELETE SET NULL,
"post id" INTEGER NOT NULL REFERENCES "posts" ON DELETE CASCADE,
"vote" SMALLINT CHECK ("vote" = 1 OR "vote" = -1)

)s

ALTER TABLE
"votes"
ADD
UNIQUE (
"User_id","post_id"

Part lll: Migrate the provided data

Now that your new schema is created, it's time to migrate the data from the provided
schema in the project's SQL Workspace to your own schema. This will allow you to review
some DML and DQL concepts, as you'll be using INSERT...SELECT queries to do so. Here are
a few guidelines to help you in this process:

1. Topic descriptions can all be empty

2. Since the bad_comments table doesn't have the threading feature, you can migrate
all comments as top-level comments, i.e. without a parent

3. You can use the Postgres string function regexp_split_to_table to unwind the
comma-separated votes values into separate rows

4. Don't forget that some users only vote or comment, and haven't created any posts.
You'll have to create those users too.

5. The order of your migrations matter! For example, since posts depend on users and
topics, you'll have to migrate the latter first.

6. Tip: You can start by running only SELECTSs to fine-tune your queries, and use a
LIMIT to avoid large data sets. Once you know you have the correct query, you can
then run your full INSERT...SELECT query.

7. NOTE: The data in your SQL Workspace contains thousands of posts and comments.
The DML queries may take at least 10-15 seconds to run.

Write the DML to migrate the current data in bad_posts and bad_comments to your new
database schema:

INSERT INTO
"users" ("username"
SELECT
DISTINCT "username"
FROM
(
SELECT
DISTINCT “username"
FROM
"bad_posts"
UNION
SELECT
DISTINCT "username"
FROM
"bad_comments"

) AS "user_ list";

INSERT INTO

"topics" ("topic_name")
SELECT

DISTINCT "topic"
FROM

"bad_posts";

INSERT INTO
"posts" (
"id",
"title",
"topic id",

"user_id",
"URL",
"text content”
)
SELECT
"bad _posts"."id",
LEFT("bad_posts"."title",),
"topics"."id",
"users"."id",
"bad_posts"."url",
"bad posts"."text content"
FROM
"bad_posts"”
JOIN "users" ON "users"."username" = "bad posts"."username"

JOIN "topics" ON "topics"."topic_name" = "bad posts"."topic";

INSERT INTO
"comments" ("comment", "post id", "user id")
SELECT
"bad_comments"."text content",
"posts"."id",
"users"."id"
FROM
"users"”
JOIN "bad_ comments" ON "users"."username" = "bad_comments"."username"

JOIN "posts" ON "posts"."id" = "bad comments"."post id";

INSERT INTO

"votes" ("user_id", "post id", "vote")
SELECT

"id",

"post_id",

FROM
(
WITH "comment user"™ AS (
SELECT
REGEXP_SPLIT TO TABLE("upvotes", ',') AS "user_name"
"id" AS "post_id"
FROM
"bad_posts"”

)
SELECT

"users"."id",
"comment_user"."user name",
"comment_user"."post_ id"
FROM
"comment_user"
JOIN "users" ON "comment user"."user name" = "users"."username"
) "upvote table";

INSERT INTO

"votes" ("user_id", "post id", "vote")
SELECT

"id",

"post id",

FROM
(
WITH "comment_user2" AS (
SELECT
REGEXP_SPLIT_TO_TABLE("downvotes", ',') AS "user_name",
"id" AS "post_id"
FROM
"bad_posts"
)
SELECT
"users"."id",
"comment_user2"."user_name",
"comment_user2"."post_id"
FROM
"comment_user2"

JOIN "users" ON "comment_user2"."user_name" = "users"."username"
) "downvote_ table";

